Linear functions define matrix multiplication and make matrices and linear functions effectively interchangeable.

1. Basis

$$ \begin{aligned} \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} &= x_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \dots + x_d \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}\\ &= x_1 \vec{e}_1 + \dots + x_d \vec{e}_d \end{aligned} $$

2. Linearity Defines Matrix-Vector Multiplication

$$ \begin{aligned} f\begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} &= f(x_1 \vec{e}_1 + \dots + x_d \vec{e}_d) \\ &= x_1 f(\vec{e}_1) + \dots + x_d f(\vec{e}_d) \qquad \text{(linearity)}\\ &= \begin{pmatrix} | & & |\\ f(\vec{e}_1) & \dots& f(\vec{e}_d)\\ | & & | \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \end{aligned} $$

3. Composition Defines Multiplication of Matrices

The property

$$ \begin{aligned} g\circ f(e_i) &= \begin{pmatrix} | & & |\\ g(\vec{e}_1) & \dots& g(\vec{e}_d)\\ | & & | \end{pmatrix} \begin{pmatrix} | \\ f(\vec{e}_i)\\ | \end{pmatrix} \end{aligned} $$

implies

$$ \begin{pmatrix} | & & |\\ g\circ f(\vec{e}_1) & \dots& g\circ f(\vec{e}_d)\\ | & & | \end{pmatrix} = \begin{pmatrix} | & & |\\ g(\vec{e}_1) & \dots& g(\vec{e}_d)\\ | & & | \end{pmatrix} \begin{pmatrix} | & & |\\ f(\vec{e}_1) & \dots& f(\vec{e}_d)\\ | & & | \end{pmatrix} $$