We want to find a1a_1 and a2a_2 using only pp and qq

pq_visualization

x2(a1+a2)px+a1a2q=(xa1)(xa2). x^2 - \underbrace{(a_1+a_2)}_{p}x + \underbrace{a_1a_2}_{q} = (x-a_1)(x-a_2).

With

q=a1a2=(md)(m+d)=m2d2, q= a_1a_2= (m-d)(m+d) = m^2 - d^2,

we immediately get the p-q formula

a1/2=m±d=m±m2q=p2±(p2)2q \begin{aligned} a_{1/2} &= m \pm d \\ &= m \pm \sqrt{m^2 - q}\\ &= \frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q} \end{aligned}

Source: 3blue1brown